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Abstract

A theoretical study dealing with intensity interference
patterns from the exit surfaces of ®nite perfect t � l
crystals has been undertaken using the Takagi±Taupin
equations and the Riemann±Green technique. Numeri-
cal simulations have been performed for the 220
re¯ection in diamond allowing for different types of
amplitude-modulated incoming plane waves. The effects
caused by limiting the waves by a slit system are also
discussed. The results show strong in¯uence of the
lateral crystal boundaries and are closely related to the
geometrical region structures formed by the character-
istic lines associated with the equations. In the limit of a
semi-in®nite crystal, the Borrmann±Lehmann interfer-
ence patterns are retrieved.

1. Introduction

In a series of papers, we have investigated the in¯uence
of crystal boundaries on dynamical scattering in perfect
crystals. So far questions related to extinction, ordinary
absorption (Thorkildsen & Larsen, 1998a,b,c, 1999a;
Larsen & Thorkildsen, 1998) and rocking curves
(Thorkildsen & Larsen, 1999c) have been addressed. In
the present work, we focus on the intensity patterns
arising from the exit surfaces of ®nite perfect crystals
subject to a monochromatic incident X-ray beam.

In 1963, Borrmann and Lehmann discovered a new
type of interference contrast in section topographs

where a point source was located in the vicinity of a
crystal corner of a semi-in®nite crystal plate (Borrmann
& Lehmann, 1963; Lehmann & Borrmann, 1967). The
resulting fringes were caused by multiple scattered
waves owing to the vertical limiting crystal surface. The
effect was re-investigated by Lang and co-workers
(Lang et al., 1986; Kowalski & Lang, 1986, 1987; Lang et
al., 1990) and Mai (Mai & Zhao, 1989) with the main
objective to obtain accurate structure factors by
analyzing the Borrmann±Lehmann fringe pattern.

In this analysis, we also discuss effects of nonsym-
metrical re¯ection, various types of incoming waves that
may have a limited extension owing to a slit system.
Anomalous absorption is taken into account using a
complex representation of the structure factors.

2. Theory

Various topics concerning X-ray scattering in ®nite
perfect crystals are conveniently dealt with using the
Takagi±Taupin equations (Takagi, 1962, 1969; Taupin,
1964). These include primary extinction, ordinary
absorption, rocking curves and interference patterns
(topography). The general theoretical foundation and
the nomenclature applied have been thoroughly
presented in previous papers (Thorkildsen & Larsen,
1998a,b,c, 1999a,c). We here only brie¯y outline the
main points necessary to discuss features associated with
the interference patterns arising from ®nite crystals. The
crystal and scattering geometry, face labelling and actual
coordinate systems are shown in Fig. 1.

The Takagi±Taupin equations for a perfect crystal are
written in the representation²

@ ~Do=@so � i�oh
~Dh �1�

@ ~Dh=@sh � i�ho
~Do: �2�

They may be transformed to:

@2 ~Dp=@so@sh � �oh�ho
~Dp � 0 p 2 �o; h�: �3�

This is the canonical form of a second-order hyperbolic
partial differential equation. Applying the Riemann±
Green technique, the amplitude of the diffracted
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Fig. 1. Crystal dimensions, surface labels, coordinate systems and
scattering geometry.

² �pq � ÿ�KC�pÿq � �re�C=Vc�Fpÿq; all symbols have their standard
interpretation.
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wave®eld ~Dh at a point P within the crystal is obtained
from the integral equation

~Dh�P� � �i�ho=sin 2�oh�
R

S�P�
so � dS Gh�PjS� ~D�b�o �S�: �4�

i�hoGh�PjS� is the boundary-value Green function or the
characteristic function, the solution of the equation for
the diffracted ®eld subject to a point source at S, i.e. by
applying the boundary condition ~D�b�o �S� � ��sh ÿ sh�S��.
The characteristic lines associated with equation (3)
coincide with the coordinate axes. The boundaries of the
crystal give rise to a multiple geometrical region struc-
ture separated by these lines (Uragami, 1969, 1970, 1971;
Saka et al., 1972a,b, 1973). To each region, m, a speci®c
boundary-value Green function is assigned. The region
structure and the corresponding family of Green func-
tions depend on the position of the source point on the
entrance surface of the crystal. For the t � l crystal
considered, we have two different topologies² giving rise

to a Laue and a Bragg situation, respectively, cf. Fig.
2. The actual region structures associated with Borr-
mann±Lehmann interference in semi-in®nite crystals
(Borrmann & Lehmann, 1963; Lehmann & Borrmann,
1967) are depicted in Fig. 3. It is evident that these cases
occur as special limits of the general region structures.

We use a mathematical representation of the
incoming and diffracted wave corresponding to ampli-
tude modulated plane waves:

Do�r� � D�e�o �r� exp�ÿ2�iKor� �5�
Dh�r� � D

�e�
h �r� exp�ÿ2�iKhr�: �6�

It has previously been shown (Thorkildsen & Larsen,
1998a) that the amplitude of the diffracted wave at the
exit point M, expressed in the spatial variables �so; sh�,
becomes:

D
�e�
h �so�M�; sh�M��
� �i�ho=sin 2�oh�

R
S�M�

so � dS D�e�o �so�S�; sh�S��

�Gh�u0jso�M� ÿ so�S�; sh�M� ÿ sh�S��
� expf2�i�h�sh�M� ÿ sh�S��g exp

ÿÿ �iK�0

� f�so�M� ÿ so�S�� � �sh�M� ÿ sh�S��g
�
: �7�

The range of integration covers that part of the entrance
surface that gives rise to a diffracted ®eld at M. The
expansion parameter, u0 � �oh�ho, is in general a
complex quantity owing to resonance scattering effects.

Fig. 3. Geometrical region structures in connection with Borrmann±
Lehmann interference. (a) Type I (negative). (b) Type II (positive).
Designation according to Lang et al. (1986).

² The asymmetry angle  must satisfy equations (7) and (8) of
Thorkildsen & Larsen (1999a).

Fig. 2. (a) Bragg and (b) Laue families of regions.
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Thus, anomalous absorption is incorporated by this
representation (Kato, 1992). �h is the excitation error,
proportional to the deviation, ��oh, from the Bragg
condition. �0, the average electric susceptibility, is also
complex leading to refraction and ordinary absorption
effects.

In what follows, we express the amplitude of the
incoming wave by D�e�o �r� � D�e�o � f �r�. f �r� represents
the spatial modulation of the beam amplitude.
Furthermore, the integration set-up in (7) is signi®cantly
simpli®ed using a set of dimensionless coordinates²
�x; y�, respectively, related to the surface coordinates r0

or r1 of the source and exit point.
Once the amplitude of the displacement ®eld is

known at every point on the exit surfaces of the crystal,
we may calculate:

(i) the intensity of the diffracted beam by the square
modulus of the ®eld amplitude;

(ii) the power of the diffracted beam by an integration
of the intensity function across the exit surface(s);

(iii) the integrated power by an additional integration
in the deviation parameter ��oh.

In this work, we focus on the intensity pattern. It is
here formally expressed by

Ih�yj j� � I�e�o j�hoj2�tl=sin 2�oh�I�0�h �yj j� �8�
with

I
�0�
h �yj j� � �1=2��

����� Pi�A;B

P
m�m0

iÿj
�y�

R
Siÿj�y;m�

dx f �x�

�G
iÿj
h �ujx; yjm�Qiÿj

h �x; y�Aiÿj
h �x; y�

�����
2

: �9�

In this equation, j 2 fA;Dg denotes one of the exit
surfaces. � is a geometrical parameter, � � �t=l� tan �oh.
The actual Green functions, G

iÿj
h �ujx; yjm� with

u � u0 �l=2 sin �oh�2, are given³ in Thorkildsen & Larsen
(1999a). The functions Q

iÿj
h and A

iÿj
h are related to

refraction and ordinary absorption, cf. Thorkildsen &
Larsen (1999c). They depend upon the dimensionless
parameters �0 � �2l=�� cos �oh and �0 � � �l=2 sin �oh�,
� being the linear absorption coef®cient.

The various modulating functions, f �x�, treated in this
work are summarized below:

² Various representations are used for x and y depending on the actual
problem. ³ In the coordinate representation �so; sh�.

Fig. 4. Reference patterns for Laue and Bragg scattering, semi-in®nite crystals, 220 re¯ection in diamond. Intensity in arbitrary units. The ®nite
dimensions t or l are 1000 mm.
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f �x� �
��xÿ x0� idealized point source

1 incident plane wave

exp�ÿ�i�s�xÿ x0�2� incident spherical wave.

8<:
�10�

The parameter �s is de®ned by

�s � �l cos �oh�2=�R; �11�
R being the radius associated with the spherical wave.
For this case, the derivation of f �x� is given in Appendix
A. The idealized point source may be viewed as the limit
of the function

f �x� � 1=� when x 2 �x0 ÿ�=2; x0 ��=2�
0 otherwise

n
when �! 0. In this case, the integration across the
entrance surface of (9) is trivial owing to the appearance
of the � function. For the other two cases, the surface
integration set-up is valign="top" more complex
(Thorkildsen & Larsen, 1998d, 1999b). An interesting
situation occurs if a slit is introduced to limit the spatial
extension of the incoming beam. This is conveniently
dealt with by rede®ning the actual range of the surface
integration, i.e.R

Siÿj�y;m�
dx! R

Siÿj�y;m�\�x0ÿ�=2;x0��=2�
dx:

� is the width of the slit projected onto the actual
entrance surface.

3. Results and discussion

3.1. Scattering system

The system used as basis for the simulations has been
the 220 re¯ection in diamond. The value a � 3:567 AÊ

was adopted for the lattice constant (Hom et al., 1975).
The structure factor was calculated at room temperature
using atomic form factors from Waasmaier & Kirfel
(1995), anomalous-scattering corrections based on the
program FPRIME (Cromer & Liberman, 1970; Cromer,
1995) and the value B � 0:143 AÊ 2 for the Debye±Waller
factor (Peng et al., 1996). This gives the value
F220 � 15:39, in agreement with the experimental value
obtained by Takama et al. (1990). The extinction length
�oh becomes 10:5 mm,

�oh �def
1=�j�ohjj�hoj�1=2:

This corresponds to �g � 30:2 mm, �g � �oh�� cos �oh� is
the de®nition of the extinction length used by Lang et al.
(1990). The wavelength of the incident X-ray beam was
given the value 1.000 AÊ , and it was assumed to be in the
�-polarization state. Some other parameters are given in
Table 1.

3.2. Reference patterns

Fig. 4 gives the standard intensity patterns for semi-
in®nite crystals. The intensity distribution associated

with the Borrmann triangle for a point source on B
(transmission case) is shown in Fig. 4(a). The geome-
trical region structure, Fig. 4(c), has only one region,
m � 1, which is not affected by the lateral boundaries of
the crystal. The intensity pattern for symmetrical scat-
tering is modelled by (Authier, 1996)

Ih�y� � jJ0f2� ~u�1ÿ y2��1=2gj2 exp�ÿ2 ~��
with y 2 �ÿ1; 1�; �12�

where

~u � �oh�ho�t=2 cos �oh�2 �13�
~� � �t=2 cos �oh: �14�

�t tan �oh�y measures the lateral distance between the
positions of the exit and source points. Fig. 4(b) shows
the intensity distribution for a point source on A
(re¯ection case), cf. Lang & Mai (1979). The char-
acteristic line parallel to so does not encounter the `back
surface' of the crystal, cf. Fig. 4(d), thus we only need to
take region m � 1, in principle of in®nite extension, into
account. (This corresponds to the Darwin case of Bragg
scattering.) The intensity pattern, also for the case of
symmetrical scattering, is modelled by (Uragami, 1971)

Ih�y� � jJ0�2u1=2y� � J2�2u1=2y�j2 exp�ÿ2�0y�
with y 2 �0; 2 cot �oh�: �15�

ly measures the distance between exit and source point.

Fig. 5. Measuring the intensity along a common axis ? sh.

Table 1. Some parameters for diamond

�oh: Bragg angle. ��0
oh: shift in Bragg angle. The dimensionless

quantities �, u, �0 and �0 refer to the crystal dimension
t � l � 1000� 1000 mm.

�oh ��� ��0
oh �10ÿ3�� � u �0 �0

23.358 0.747 0.432 14500� i 33:3 320.0 0.376
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3.3. Recording the diffracted intensity

In what follows, the intensity distribution from the
exit surfaces A and D will be measured along a direction
normal to sh, cf. Fig. 5. The actual coordinate is denoted
by rF. With the exit point M along the surface A, we
have:²

rF � ÿ sin �oh�1=�ÿ��t ÿ ro�M��;
while for M along D:

rF � cos �oh�1=�ÿ�r1�M�
Using the variable y here de®ned by the relations
r0�M� � t�ÿy=� or r1�M� � l�ÿy and introducing
z � rF=t, we obtain:

(i) When y measures the position along A:

z � ÿ sin �oh�1=�ÿ ÿ y=��: �16�

(ii) When y measures the position along D:

z � sin �oh�y=��: �17�² The trigonometrical quantities �� and �� are given in Appendix B.

Fig. 6. Point-source intensity patterns ± source on A. Intensity in units of 10ÿ3.
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3.4. Intensity distributions owing to point sources

In all the plots, Ih represents the quantity I
�0�
h of

equation (9) using z as the independent variable. In
preparing the plots, we have not taken into account the
effect of refraction at the exit boundaries. This causes
angle deviations of the order of <�0 � 10ÿ5. The
deviations will also depend on the scattering situation
iÿ j and the asymmetry angle .

3.4.1. Point source on A. Fig. 6 shows the simulated
intensity patterns with the point source located 200 mm
from the upper left corner of the crystal. Fig. 7 depicts

the associated geometrical region structures, while Table
2 gives the exact extension of the various scattering
regions measured along z. The intensity scale has been
chosen to amplify details, which means that the intensity
enhancement close to the borders of region m � 1 is
being cut. Fig. 6(a) comprises both a re¯ection case
(z < 0) and a transmission case (z > 0). The in¯uence

Fig. 7. Actual region structures ± source on A. Position of source 200 mm from upper left corner. Crystal dimensions (t � l): (a) 1000� 500 mm, (b)
1000� 200 mm, (c) 1000� 150 mm, (d) 1000� 100 mm, (e) 1000� 50 mm.

Table 2. Contributions at the exit surfaces for a point
source on A

l z iÿ j �m�
500 (ÿ0.317, 0.0) Aÿ A �1�

(0.0, 0.317) AÿD �1�
200 (ÿ0.317, 0.0) Aÿ A �1�

(0.0, 0.050) AÿD �1�
(0.050, 0.184) AÿD �2�

150 (ÿ0.317, ÿ0.0418) Aÿ A �1�
(ÿ0.0418, 0.0) Aÿ A �3�
(0.0, 0.0418) AÿD �3�
(0.0418, 0.138) AÿD �2�

100 (ÿ0.317, ÿ0.134) Aÿ A �1�
(ÿ0.134, 0.0) Aÿ A �3�
(0.0, 0.0500) AÿD �3�
(0.0500, 0.0918) AÿD �4�

50 (ÿ0.317, ÿ0.225) Aÿ A �1�
(ÿ0.225, ÿ0.134) Aÿ A �3�
(ÿ0.134, ÿ0.0418) Aÿ A �5�
(ÿ0.0418, 0.0) Aÿ A �7�
(0.0, 0.0418) AÿD �7�
(0.0418, 0.0459) AÿD �6�

Table 3. Contributions at the exit surfaces for a point
source on B

l z iÿ j �m�
1000 (0.403, 0.641) BÿD �1�

(0.641, 0.918) BÿD �3�
500 (ÿ0.0564, 0.0) Bÿ A �2�

(0.0, 0.0564) BÿD �2�
(0.0564, 0.181) BÿD �1�
(0.181, 0.459) BÿD �3�

400 (ÿ0.148, 0.0) Bÿ A �2�
(0.0, 0.0897) BÿD �2�
(0.0897, 0.148) BÿD �4�
(0.148, 0.367) BÿD �3�

300 (ÿ0.240, ÿ0.00212) Bÿ A �2�
(ÿ0.00212, 0.0) Bÿ A �5�
(0.0, 0.00212) BÿD �5�
(0.00212, 0.240) BÿD �4�
(0.240, 0.275) BÿD �3�

200 (ÿ0.332, ÿ0.0939) Bÿ A �2�
(ÿ0.0939, 0.0) Bÿ A �5�
(0.0, 0.0354) BÿD �5�
(0.0354, 0.0939) BÿD �7�
(0.0939, 0.184) BÿD �6�

150 (ÿ0.378, ÿ0.140) Bÿ A �2�
(ÿ0.140, ÿ0.102) Bÿ A �5�
(ÿ0.102, 0.0) Bÿ A �8�
(0.0, 0.102) BÿD �8�
(0.102, 0.136) BÿD �7�
(0.136, 0.138) BÿD �9�
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of the `back surface' is readily seen in Figs. 6(b)±6(e). It
is evident that the AÿD contributions become less
signi®cant for increasing values of the ratio t=l. The
fringe spacing for region m � 3, Aÿ A scattering,
decreases when z is reduced towards the limiting value
separating this region from that of m � 1. The mathe-
matical structure of the associated Green function
resembles the one for the pure Laue case, giving a
denser fringe spacing close to the region border.

3.4.2. Point source on B. Fig. 8 shows the simulated
intensity patterns with the point source located 130 mm
to the left of the upper right corner of the crystal. Fig. 9

depicts the associated geometrical region structures,
while Table 3 gives the intervals in z of the various
scattering contributions. The situation addressed in Fig.
8(a) corresponds to the standard Borrmann±Lehmann
pattern, type II, cf. Fig. 4 of Lang et al. (1990). The ratio
t=�g used in their work as a reference parameter has a
value � 33:0 with the numerical input of Table 1. The
Borrmann±Lehmann intensity distribution is associated
with BÿD scattering, region m � 3. It is rather insen-
sitive to changes of crystal dimension and may also be
realized as a combined contribution from the regions
m � 3 and m � 4, e.g. Figs. 8(c) and 8(d). Generally, the

Fig. 8. Point-source intensity patterns ± source on B. Intensity in units of 10ÿ3.
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fringe pattern has increased density close to the points
de®ned by the projection on z of the characteristic lines
parallel to sh for m � 1. Contributions from higher-
order BÿD regions show on the other hand a less
dense fringe spacing. The fringe pattern is sensitive to
nonsymmetrical scattering, as can be seen from Fig. 10,
cf. also Fig. 11 and Table 4. Here the intensity distribu-
tions for a crystal with t � l � 1000� 300 mm are shown
for values of the asymmetry angle  � �10�. For the
sake of completeness, the expressions giving the inten-
sity distribution for the special Borrmann±Lehmann
patterns in the case of nonsymmetrical scattering are
included in Appendix B.

3.5. Intensity patterns owing to an incoming plane wave

Fig. 12 depicts the intensity distributions for various
crystal dimensions owing to an incoming plane wave.
��oh � 0 is applied for all simulations. Table 5 gives the
scattering regions that contribute to the superposition of
®eld amplitudes at different parts of the exit surfaces.
The geometrical region structures depend upon � alone.
This parameter is the same for the two cases illustrated
in Figs. 12(a) and 12(b). The constant intensity level for

z 2 �0:396; 0:522� is that of pure Laue transmission for
the actual crystal thicknesses. Owing to the complexity
of the intensity patterns, it is obvious that the calculation
of the associated diffracted power will be dif®cult. For
the intervals in z involving combined Aÿ A and Bÿ A
scattering �z < 0� or AÿD and BÿD scattering
�z > 0�, the intensity patterns have both a super- and a
sub- fringe structure. The superstructure depends on the
geometrical parameter �. For the substructure, the fringe
spacing seems to be approximately constant depending
on the actual exit surface. Experimentally, a point-
source situation may be realized using a slit to limit the

Fig. 9. Actual region structures ± source on B. Position of source 130 mm from upper right corner. Crystal dimensions (t � l): (a) 1000� 1000 mm,
(b) 1000� 500 mm, (c) 1000� 400 mm, (d) 1000� 300 mm, (e) 1000� 200 mm, ( f ) 1000� 150 mm.

Table 4. Contributions at the exit surfaces for a point
source on B, nonsymmetrical scattering

 (�) z iÿ j �m�
ÿ10 (ÿ0.408, 0.0) Bÿ A �2�

(0.0, 0.000726) BÿD �2�
(0.000726, 0.147) BÿD �4�
(0.147, 0.251) BÿD �3�

10 (ÿ0.0652, 0.0) Bÿ A �2�
(0.0, 0.106) BÿD �2�
(0.106, 0.181) BÿD �4�
(0.181, 0.292) BÿD �3�

Fig. 10. Point-source intensity patterns for nonsymmetrical scattering ± source on B. Intensity in units of 10ÿ3.
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spatial extension of the incoming wave. Fig. 13 shows the
effect of using a slit in connection with a plane wave. The
slit gives an illuminated area of width � on the B surface
centered at the position 130 mm from the upper right
corner of the crystal. The crystal dimensions are
1000� 1000 mm. With � � 1 mm, there is complete

agreement with the result based on the point-source
formulation, cf. Fig. 8(a). By increasing the slit dimen-
sion, we observe that the part of the intensity distribu-
tion having fringe spacing less than � is averaged
towards zero. This means that the Borrmann±Lehmann
part of the intensity pattern remains unchanged for
�<� 20 mm.

Table 5. Contributions at the exit surfaces in the case of an
incoming plane wave

l z iÿ j �m�
1000 (ÿ0.396, 0.0) Aÿ A �1� Bÿ A �2�

(0.0, 0.396) AÿD �1� BÿD �1; 2�
(0.396, 0.522) BÿD �1�
(0.522, 0.918) BÿD �1; 3�

400 (ÿ0.396, ÿ0.0293) Aÿ A �1� Bÿ A �2�
(ÿ0.0293, 0.0) Aÿ A �1� Bÿ A �2; 5�
(0.0, 0.0293) AÿD �1� BÿD �2; 4; 5�
(0.0293, 0.338) AÿD �1� BÿD �2; 3; 4�
(0.338, 0.367) AÿD �1; 2� BÿD �3; 4; 6�

200 (ÿ0.396, ÿ0.213) Aÿ A �1� Bÿ A �2�
(ÿ0.213, ÿ0.0293) Aÿ A �1� Bÿ A �2; 5�
(ÿ0.0293, 0.0) Aÿ A �1� Bÿ A �5; 8�
(0.0, 0.0293) AÿD �1; 2; 3� BÿD �5; 7; 8�
(0.0293, 0.154) AÿD �1; 2� BÿD �5; 6; 7�
(0.154, 0.184) AÿD �1; 2� BÿD �6; 7; 9�

Fig. 11. Actual region structures for nonsymmetrical scattering ± source
on B. Position of source as in Fig. 9. Crystal dimensions:
t � l � 1000� 300 mm.

Fig. 12. Intensity patterns owing to an incoming plane wave. Intensity in units of 10ÿ3 (a) or 10ÿ5 (b)±(d).
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3.6. Spherical waves

In the context of standard dynamical theory, the
concept of a point source is related to an incoming
spherical wave (Kato, 1961a,b, 1968a,b; AzaÂroff et al.,
1974). By using the stationary-phase method (Jones,
1966; Jeffreys & Jeffreys, 1972), we have in the limit
�s !1: R

dx exp�ÿ�i�s�xÿ x0�2�Giÿj
h �x; y�

� �1=�s�1=2 exp�ÿi�=4�Giÿj
h �x0; y�: �18�

Thus, the intensity pattern arising from a crystal subject
to an incoming spherical wave is given by the one
calculated from the concept of a mathematical point
source. The application of the stationary-phase method
requires however that the parameter �s, given by (11),
becomes large. This requirement may not be ful®lled for
®nite crystals. Fig. 14 shows the intensity pattern arising
from a 50� 50 mm crystal subject to incoming spherical
waves having different radii R. x0 is zero, thus the
reference direction is from the beam source to the upper
left corner of the crystal, point O, cf. Fig. 1. ��oh asso-
ciated with this direction is set to zero in the simulations.
For R � 100 m, the intensity pattern is identical to that

of an incoming plane wave. For decreasing values of R,
the intensity patterns change signi®cantly. Fig. 15 gives
the expected ®nal result from the point-source
approach. It is clear that this limit is not reached even
for R � 0:1 m. It should be mentioned that for
increasing values of �s the integrand oscillates so rapidly
that it is dif®cult to obtain proper convergence in the
numerical integrations.² This problem ®rst arises for
those exit points involving the largest path lengths
measured from O.

Fig. 16 shows simulations that incorporate the effect
of a slit in connection with an incoming spherical wave
of radius R � 1 m. The crystal size is 1000� 1000 mm.
The reference point x0 has the same position as that used
for the simulations with a point source on the B surface.
For the smallest slit size, the result is the same as for a
point source. Increasing the slit size seems to have little
effect on the typical Borrmann±Lehmann features of the
pattern, contrary to what was found for the case of a
plane wave.

² The numerical calculations are performed using the mathematical
software system Mathematica (Wolfram, 1996).

Fig. 13. Intensity patterns owing to an incoming plane wave limited by a slit giving an illuminated area of width �. Intensity in units of 10ÿ8 (a) or
10ÿ6 (b)±(d).
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4. Conclusions

The use of the Takagi±Taupin equations along with the
Riemann±Green technique has proved to be a powerful
tool in the analysis of dynamical diffraction features
from ®nite perfect crystals. In the particular context of
intensity calculation, equation (9) represents the key
result. The introduction of the modulating function, f �x�,
also adds the possibility of studying various types of
waves impinging the crystal within the same mathema-
tical framework. In the limit of a semi-in®nite crystal,
the Borrmann±Lehmann results are obtained. New
extended expressions including nonsymmetrical scat-
tering are given for these cases.

The series of simulations presented for the 220
re¯ection in ®nite t � l perfect diamond crystals shows
that the in¯uence of the lateral crystal surfaces strongly
affects the resulting intensity patterns. Furthermore,
even small changes in the input parameters may cause
signi®cant alterations in the picture. From an experi-
mental point of view, this is important. It is crucial to
design an experiment in such a way that all parameters
(crystal geometry, re¯ection asymmetry, slit size, posi-
tion of point source etc.) are known to great accuracy.
The interference patterns produced by the crystal itself
are complex and may have a detailed fringe structure.
This may be dif®cult to resolve experimentally.
However, the potential of using such patterns for accu-

Fig. 14. Intensity patterns owing to an incoming spherical wave. Ordinate: intensity in units of 10ÿ3. Abscissa: `®lm' coordinate z.
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rate determination of the structure factor, as suggested
by Lang et al., is still evident. It may however be a severe
experimental challenge to specify/control all parameters
needed for a proper theoretical interpretation.

APPENDIX A
A spherical wave represented by an amplitude-

modulated plane wave

Fig. 17 shows some geometrical quantities used in this
section. This derivation closely follows the work of

Authier & Simon (1968). The expression for a spherical
wave,

�oexp�ÿ2�iKr�=4�r;

is expanded as

Do�r� � ��o=4�r� exp�ÿ2�i�Krÿ Ko � r��
� exp�ÿ2�iKo � r�: �19�

The reference wavevector Ko � so=� and the direction
r�S0� is parallel to so. ��oh is calculated with respect to
Ko. At the boundary, we have

r � r�S� � r�S0� � d�S� and jr�S0�j �def
R:

To second order in d � jd�S�j, the amplitude at the
entrance point �S� is given by

D�e�o �S� � ��o=4�R� exp
ÿÿ �i�1=�R�fd2 ÿ �ŝo � d�S��2g

�
:

�20�
In the general case of nonsymmetrical scattering, this
expression becomes:

(i) Source on A:

D�e�o �S� � ��o=4�R� expfÿ�i�1=�R� sin2 �oh�1=�2
��

� �r0�S� ÿ r0�S0��2g:
Fig. 15. Intensity pattern owing to a point source at O.

Fig. 16. Intensity patterns owing to an incoming spherical wave limited by a slit. Intensity in units of 10ÿ8 (a) or 10ÿ6 (b)±(d). �s � 8:4� 103.
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(ii) Source on B:

D�e�o �S� � ��o=4�R� expfÿ�i�1=�R� cos2 �oh�1=�2
��

� �r1�S� ÿ r1�S0��2g:
With the introduction of dimensionless variables, we
have:

(i) For Aÿ A and AÿD scattering:

r0�S� ÿ r0�S0� � cot �oh��l�x0 ÿ x�:
(ii) For Bÿ A and BÿD scattering:

r1�S� ÿ r1�S0� � ��l�xÿ x0�:
It turns out that the ®eld at any entrance point may be
expressed by the relation

D�e�o �x� � ��o=4�R� exp�ÿ�i�s�xÿ x0�2�: �21�

APPENDIX B
General expressions for Borrmann±Lehmann intensity

patterns

We here present the general expressions, with allowance
for nonsymmetrical scattering, for the Borrmann±
Lehmann intensity patterns, cf. Fig. 3. The following
de®nitions apply:

�� � sin �oh=sin��oh � � �22�
�� � cos �oh=cos��oh � �: �23�

B1. Type I pattern

The variable x is de®ned by r1�S� � tx, while y is
de®ned by r0�M� � t � ty or r1�M� � ty for exit points

on surface A or D, respectively. The type I interference
pattern is realized when x 2 �0; tan �oh��ÿ=�ÿ��:

B1.1. B±A scattering ± region II. For
y 2 �cot �oh��ÿ=�ÿ�xÿ 1; 0�:

Ih�x; y� �
���J0

ÿ
2f ~u�1=���ÿ���1� y� � cot �oh���=���x�

� ��1� y� ÿ cot �oh��ÿ=�ÿ�x�g1=2
�

� �1� y� ÿ cot �oh��ÿ=�ÿ�x
�1� y� � cot �oh���=���x
� J2

ÿ
2f ~u�1=���ÿ���1� y� � cot �oh���=���x�

� ��1� y� ÿ cot �oh��ÿ=�ÿ�x�g1=2
����2

� expfÿ ~���1=�� � 1=�ÿ��1� y�
� cot �oh�1=�� ÿ 1=�ÿ�x�g: �24�

B1.2. B±D scattering ± region II. For
y 2 �0; ���=���ftan �oh ÿ ��ÿ=�ÿ�xg�:

Ih�x; y� �
���J0

ÿ
2f ~u�1=���ÿ��1� cot �oh��ÿ=�ÿ��yÿ x��

� �1ÿ cot �oh���=����yÿ x��g1=2
�

� 1ÿ cot �oh����=���y� ��ÿ=�ÿ�x�
1� cot �oh���ÿ=�ÿ�y� ���=���x�
� J2

h
2
ÿ
~u�1=���ÿ�f1� cot �oh���ÿ=�ÿ�y

� ���=���x�gf1ÿ cot �oh����=���y
� ��ÿ=�ÿ�x�g

�1=2
i���2 expfÿ ~���1=�� � 1=�ÿ�

ÿ cot �oh�1=�� ÿ 1=�ÿ��yÿ x��g: �25�

B1.3. B±D scattering ± region I. For
y 2 ����=���ftan �oh ÿ ��ÿ=�ÿ�xg; tan �oh���=��� � x�:

Ih�x; y� � ��J0

ÿ
2f ~u�1=���ÿ��1� cot �oh��ÿ=�ÿ��yÿ x��

� �1ÿ cot �oh���=����yÿ x��g1=2
���2

� expfÿ ~���1=�� � 1=�ÿ�
ÿ cot �oh�1=�� ÿ 1=�ÿ��yÿ x��g: �26�

B2. Type II pattern

The variable x is now de®ned by r1�S� � l ÿ tx, while y
is de®ned by r1�M� � l ÿ ty. The type II interference
pattern is realized when x 2 �0; tan �oh���=����:

B2.1. B±D scattering ± region III. For
y 2 �0; ��ÿ=�ÿ�ftan �oh ÿ ���=���xg�:

Fig. 17. Geometry used for derivation of the amplitude modulating
function in the case of a spherical wave.
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Ih�x; y� � ��J0

ÿ
2f ~u�1=���ÿ��1� cot �oh��ÿ=�ÿ��xÿ y��

� �1ÿ cot �oh���=����xÿ y��g1=2
�

ÿ J0

�
2
ÿ
~u�1=���ÿ�f1� cot �oh���ÿ=�ÿ�x

� ���=���y�gf1ÿ cot �oh����=���x
� ��ÿ=�ÿ�y�g

�1=2���2 expfÿ ~���1=�� � 1=�ÿ�
ÿ cot �oh�1=�� ÿ 1=�ÿ��xÿ y��g: �27�

B2.2. B±D scattering ± region I. For
y 2 ���ÿ=�ÿ�ftan �oh ÿ ���=���xg; tan �oh��ÿ=�ÿ� � x�:
Ih�x; y� � ��J0

ÿ
2f ~u�1=���ÿ��1� cot �oh��ÿ=�ÿ��xÿ y��

� �1ÿ cot �oh���=����xÿ y��g1=2
���2

� expfÿ ~���1=�� � 1=�ÿ�
ÿ cot �oh�1=�� ÿ 1=�ÿ��xÿ y��g: �28�
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